The Structure of a New Macrolide Antibiotic, YC-17

By A. KINUMAKI and M. SUZUKI*

(Microbial Chemistry Research Laboratory, Tanabe Seiyaku Co. Ltd., Toda, Saitama, Japan)

Summary A new macrolide antibiotic YC-17 has been identified as 10-deoxymethymycin (I) and its structure elucidated.

WE have isolated a new macrolide antibiotic YC-17(I) from the early culture filtrate of *Streptomyces venezuelae* MCRL

0376. The antibiotic was obtained together with two other known antibiotics methymycin $(II)^1$ and neomethymycin $(III)^2$. It showed antibiotic activity against Grampositive bacteria.

The spectra of YC-17, $C_{25}H_{43}NO_6$ (M^+ , m/e 453·3048), m.p. 68—70°, $[\alpha]_{22}^{22}$ + 84° (c 1, CHCl₃), +71·8° (c 1, MeOH), were λ_{max} (EtOH) 225—6 (ϵ 10,300) and 285 nm (457) indicating a $\alpha\beta$ -unsaturated ketone, and ν_{max} 3420 (OH), 1730 (lactone and carbonyl), 1695 (conjugated ketone), and 1635 (conjugated double bond) suggest a structural similarity to methymycin (II). The n.m.r. spectrum shows one-N-(CH₃)₂ and six C-CH₃ groups. The doublet (8-H, J 16 Hz) at 6·40 p.p.m. and the double doublet (9-H, J 16, 4·5 Hz) at 6·82 p.p.m. in the olefinic region suggests the partial structure (-CO-CH=CH-CH<), and the broad triplet at 4·98 p.p.m. was assigned to the methine proton at C-11.

On acetylation the i.r. absorption at 3420 cm^{-1} disappeared and the formation of new acetyl methyl protons was observed in n.m.r. confirming the presence of an OH group.

SCHEME. Fragmentation pattern of (I).

TABLE.	Peaks	at	high	resolution	for	(T)	۱
TUDDE.	I cuns	uv	nugn	103014101	101	111	,

m/e	Observed	Calculated	$\Delta m imes 10^{-3}$	Composition
453	$453 \cdot 3048$	$453 \cdot 3087$	-3.9	CasHasNOs (I)
395	$395 \cdot 2694$	$395 \cdot 2669$	$2 \cdot 5$	$C_{32}H_{37}NO_5$ (a)
279	$279 \cdot 1940$	$279 \cdot 1960$	-2.0	C,,H,O, (b)
174	174.1129	$174 \cdot 1128$	0.1	$C_{s}H_{1s}NO_{s}$ (c)
141	141.0892	141.0916	-2.4	$C_{8}H_{13}O_{2}$ (d)

We concluded that YC-17 had the structure 10-deoxymethymycin (I).

The high resolution mass spectrometry fragmentation pattern (Scheme) supports structure (I) and so do the accurate mass units of predominant peaks (Table).

J.C.S. Снем. Сомм., 1972

The structural difference between (I) and (II) (at C-10) is analogous to the difference between narbomycin³ and picromycin.⁴ Since picromycin is formed biogenetically directly from narbomycin,⁵ (I) should be regarded as a biosynthetic precursor of (II).

We thank Dr. T. Tsuchiya (The Government Chemical Industrial Research Institute, Tokyo) for the high resolution mass spectra.

(Received, 20th April 1972; Com. 674.)

- ¹ C. Djerassi and J. A. Zderic, J. Amer. Chem. Soc., 1956, 78, 6390.
 ² C. Djerassi and O. Halpern, J. Amer. Chem. Soc., 1957, 79, 2022.
 ³ V. Prelog, A. M. Gold, G. Talbot, and A. Zamojski, Helv. Chim. Acta, 1962, 45, 4.
 ⁴ R. W. Rickards, R. M. Smith, and J. Majer, Chem. Comm., 1968, 1049.
 ⁵ T. Hori, I. Maezawa, N. Nagahama, and M. Suzuki, Chem. Comm., 1971, 304.